Доклады Академии наук СССР 1972. Том 206, № 1

УДК 669.017:538

ТЕХНИЧЕСКАЯ ФИЗИКА

Г. Т. ДУБОВКА, Е. Г. ПОНЯТОВСКИЙ

О ВЛИЯНИИ ДАВЛЕНИЯ НА МАГНИТНОЕ ПРЕВРАЩЕНИЕ В Г. Ц. К.-СПЛАВАХ СИСТЕМЫ ЖЕЛЕЗО — НИКЕЛЬ

(Представлено академиком Г. В. Курдюмовым 20 XII 1971)

У сплавов Fe — Ni при 60—70 ат. % Fe (инварный диапазон) обнаруживаются аномалии многих физических свойств. При температурах ниже температуры магнитного упорядочения эти сплавы обладают близким к нулю коэффициентом линейного расширения, аномально высокой магнитострикцией и сжимаемостью. С аномалией магнитострикции и сжимаемости связана высокая чувствительность магнитных свойств, и в частности точек Кюри T_c , к давлению. Зависимость T_c от давления для отдельных сплавов Fe — Ni (в основном инварного диапазона) исследовалась в работах (¹⁻⁴); наиболее полные данные для этого диапазона были приведены в статье (³).

В нашей работе излагаются результаты измерения смещения точек Кюри под действием давления для системы Fe — Ni в диапазоне концентраций 30—100% Ni. Сплавы готовились методом вакуумной плавки в индукционной печи из электролитического никеля и карбонильного железа. Слитки подвергались отжигу при 1100° C в течение 6 час. с последующей закалкой в воду. В качестве передающей давление среды для сплавов с $270^{\circ} \text{ K} < T_{c} < 700^{\circ} \text{ K}$ использовалась силиконовая жидкость. Давление измерялось манганиновым манометром с точностью ±200 бар. Остальные сплавы исследовались в условиях квазигидростатики, когда передающей давление средой являлось твердое вещество. Давление в этой аппаратуре определялось по калибровочным кривым с точностью ±500 бар. Точки Кюри фиксировались с точностью ±3° C методом дифференциального трансформатора на частоте $f \approx 1500$ гц при величине поля $H \approx 0,1$ э (⁴). Во всем исследованном интервале давления (до 20 кбар) и концент-

раций температура Кюри линейно смещается с давлением

Состав, ат. % Мі	28	29	3	0 31		32	32,5
<i>т</i> _с , °К	282	301	34	3 38	1 4	09	426
$-\frac{dT_{\rm C}}{dP}, \frac{^{\rm o}{\rm K}}{_{\rm K 6 a p}}$	$7,5\pm0,1$	6,8±0	9,1 5,8±	$0,05$ $5,2\pm$	20,2 4,9	±0,1	4,7±0, 1
Состав, ат. % Ni	34	35	36	42	47,5	53 *	100
<i>Т</i> _с , °К	470	521	574	667	753	850	631
$-\frac{dT_{\rm C}}{dP}, \ \frac{{\rm K}^{\circ}}{{\rm \kappa 6ap}}$	4,4±0,2	$3,9\pm0,2$	3,5±0,1	$2,65\pm0,1$	$2,2\pm0,2$	1,6	-0,3±0,1

Результаты экспериментов приведены также на рис. 1 и 2. На рис. 1, кроме полученных нами данных, нанесено также значение dT_c/dP из работы (²), которое хорошо ложится на общую кривую. Для сплавов с $T_c < 570^{\circ}$ К зависимость dT_c/dP от T_c может быть представлена в виде $- dT_c/dP = A/T_c$, (1)

где $A = (2050 \pm 40)$ град² · кбар⁻¹.

Этот участок кривой изображен на рис. 1 пунктиром.

* Данные работы (²).

6*

Рис. 1. Зависимость точки Кюри Тс от давления P и концентраций C: 1 — наши данные, 2 — данные (²)

Рис. 2. Фазовые диаграммы сплавов Fe-Ni при давлениях 1 бар (1) и 50 кбар (2)

Для сплавов с T_c > 570° K установлена линейная зависимость величины $dT_{\rm c}/dP$ от $T_{\rm c}$, которую удобно представить в виде

$$-\frac{dT_{\rm C}}{dP} = \frac{C - C_{\rm max}}{|C - C_{\rm max}|} (T_{\rm max} - T_{\rm C}) A + B,$$
(2)

где С — содержание никеля, а T_{max} = 885° К и С_{max} = 68 ат. % Ni — координаты максимума на кривой точек Кюри в системе Fe — Ni; $A = (-7\pm0,3)\cdot10^{-3}$ кбар⁻¹, $B = (1,3\pm0,2)$ град·кбар⁻¹. Первый сомножитель в (2), по абсолютной величине равный единице, меняет знак при переходе через $T_{\rm max}$ и отражает тот факт, что зависимость $dT_{\rm C}/dP$ от состава является монотонной, а зависимость Т с — немонотонной функцией.

Формула (1) была теоретически получена в работе (5), в которой магнитные свойства инваров рассматривались с позиций зонной теории.

На рис. 2 приведены фазовые (T — C)-диаграммы сплавов Fe — Ni при давлениях 1 бар и 50 кбар в предположении линейной зависимости T_с от давления в интервале до 50 кбар. На диаграммах нанесены и линии M_s мартенситных превращений $\gamma \rightarrow \alpha$ с учетом данных (⁶).

В сплавах железа с переходными металлами возможно образование при высоких давлениях є-фазы с г.п.у.-структурой. Так, например, в сплавах Fe — Mn состава 20—30% Mn ε-фаза образуется уже при атмосферном давлении. Нами экспериментально установлено, что замещение марганца никелем в сплавах с 65% Fe резко повышает давление $\gamma \rightarrow \varepsilon$ перехода. В сплавах Fe — Ni инварного состава переход $\gamma \rightarrow \varepsilon$ не был обнаружен вплоть до давлений 100 кбар.

Таким образом, из рис. 2 следует, что сплавы Fe — Ni с г.ц.к.-структурой в дианазоне концентраций 25—30% Ni при давлениях 50 кбар и выше не будут ферромагнитными вплоть до самых низких температур. В работе (7) было показано, что у-Fe в метастабильном состоянии при атмосферном давлении и низких температурах является антиферромагнетиком с $T_{\rm N} = 67^{\circ}$ К. Логично предположить, что γ -фаза в сплавах Fe — Ni с 25-30% Ni при высоких давлениях и низких температурах также будет претерпевать антиферромагнитное упорядочение и на диаграммах состояния появятся кривая точек Нееля и линия фазового равновесия между ферромагнитной и антиферромагнитной фазами.

Институт физики твердого тела Академии наук СССР

Поступило 10 XII 1971

Черноголовка Моск. обл.

ЦИТИРОВАННАЯ ЛИТЕРАТУРА

1 L. Patrick, Phys. Rev., 93, 384 (1954). ² J. M. Leger, C. Iusse, B. Vo-d'ar, Solid State Comm., 5, 755 (1967). ³ Г. Т. Дубовка, Е. Т. Понятовский, Физ. мет. и металловед., 32, в. 6 (1971). ⁴ R. C. Wayne, L. C. Bartel, Phys. Let-ters, 28A, 196 (1968). ⁵ E. P. Wohlfarth, Phys. Letters, 28A, 569 (1969). ⁶ L. Kaufman, A. Leyenaar, J. S. Harvey, Progress in Very Tigh Pressure Re-search, N. Y., 1961, p. 90. ⁷ G. J. Johanson, M. B. McGirr, D. A. Wheeler, Phys. Rev. B4, 8208 (1970). search, N. Y., 1961, p. 90. Phys. Rev., **B1**, 3208 (1970).